Acta Cryst. (1959). 12, 172

The crystal structures of Na₃ZrF₇ and Na₃HfF₇. By L. A. Harris, Ceramic Laboratory, Metallurgy Division, Oak Ridge National Laboratory,* Oak Ridge, Tennessee, U.S.A.

(Received 25 September 1958)

Investigations of the binary systems NaF-UF₄, NaF-ZrF₄ (Barton et al., 1958a, b) and NaF-HfF₄ (Thoma, 1958) undertaken at this laboratory disclosed the presence of compounds of the R_3MX_7 type in all three systems. In the system NaF-UF₄ two forms of Na₃UF₇ are present, an α - and β -form representing high and low temperature polymorphs respectively. The crystal structure of α -Na₃UF₇ determined from X-ray powder diffraction patterns was found to be the same structure previously determined by Zachariasen (1948) from a single crystal pattern. This structure has been reported to be bodycentered tetragonal with the unit-cell dimensions

$$a_0 = 5.458 \pm 0.007$$
, $c_0 = 10.917 \pm 0.014$ Å (Zachariasen, 1948).

This cell contains 2 molecules and has a calculated density of 4.49 g.cm.⁻³.

The X-ray powder films taken of Na₃ZrF₇ and Na₃HfF₇ using a Norelco camera of 114·6 mm. diameter and Cu $K\alpha$ ($\lambda=1.5418$ Å) radiation were next indexed and both found to best fit a body-centered tetragonal unit cell. Only one set of lattice parameters

$$a_0 = 5.31 \pm 0.02$$
 and $c_0 = 10.50 \pm 0.02$ Å

are reported because the calculated differences in lattice parameters for Na₃ZrF₇ and Na₃HfF₇ are within the limits of experimental errors. Assuming 2 molecules per unit cell the calculated densities are 3·28 g.cm.⁻³ and 4·26 g.cm.⁻³ for Na₃ZrF₇ and Na₃HfF₇ respectively.

Subsequent studies of the ternary system NaF-UF₄-ZrF₄ (Barton *et al.*, 1958b) revealed the existence of a continuous series of solid solution between α-Na₃UF₇ and Na₃ZrF₇ (Fig. 1) (Barton *et al.*, 1958b). The above ob-

Fig. 1. The system 3 NaF. UF₄-3 NaF. ZrF₄.

servation of solid solution and a comparison of observed intensities for diffraction planes (Table 1) permitted the conclusion that Na_3ZrF_7 and Na_3HfF_7 are most probably isostructural with α - Na_3UF_7 . Thus in accordance with Zachariasen's calculations (1948) for Na_3UF_7 the space group for Na_3ZrF_7 and Na_3HfF_7 is $I4/mmm-D_{4h}^{1}$ with

Table 1. Comparison of powder diffraction data for α-Na₃UF₇, Na₃ZrF₇ and Na₃HfF₇

	α-Na ₃ UF ₇		Na	Na ₃ ZrF ₇		Na_3HfF_7	
hkl	I_0	$\sin^2 \theta$	I_0	$\sin^2 \theta$	I_0	$\sin^2 \theta$	
002	m	0.0199	m	0.0213	m	0.0214	
101	8	0.0250	8	0.0264	8	0.0264	
110, 102	m	0.0400	m	0.0421	m	0.0419	
112	vs	0.0597	vs	0.0630	vs	0.0630	
103	m	0.0648	m	0.0693	m	0.0691	
200	m	0.0800	w	0.0835	w	0.0834	
004		_	vw	0.0863	vw	0.0862	
202	m	0.0999	m^-	0.1051	m^{-}	0.1051	
211	8	0.1050	8-	0.1098	s ⁻	0.1098	
114	m	0.1201	m	0.1276	m	0.1273	
213	w	0.1450	m	0.1533	m	0.1534	
220, 204	8	0.1599	8	0.1679	8	0.1685	
222	w	0.1800	w	0.1886	\boldsymbol{w}	0.1884	
301	m^-	0.1849	_		_		
310, 302	m^-	0.2001	_		_		
312	m	0.2201	m	0.2296	m	0.2302	
303	\boldsymbol{w}	0.2248	w	0.2365	w	0.2362	
304	\boldsymbol{w}	0.2600	_				
321	w	0.2650	m	0.2767	m	0.2771	
314	\boldsymbol{w}	0.2795	w	0.2939	w	0.2940	

the atoms in the following positions:

2 Zr or Hf in 2 (a) $2 \text{ Na}_{\text{I}} \qquad \text{in } 2 \text{ } (b)$ $4 \text{ Na}_{\text{II}} \qquad \text{in } 4 \text{ } (d)$ $14 \text{ F} \qquad \text{in } 16(m)$

The interionic distances for Na-7 F, Zr-7 F, and Hf-7 F were calculated to be 2.28 Å assuming the values of $x=\frac{1}{4}$ and $z=\frac{1}{8}$ to be very close to the true positions for the fluorine atoms in both the Na₃ZrF₇ and Na₃HfF₇ structures.

The writer wishes to express his sincerest thanks to Dr H. Yakel, Jr., who read the manuscript and gave helpful suggestions,

References

BARTON, C. J., FRIEDMAN, H. A., GRIMES, W. R., INSLEY,
H., MOORE, R. E. & THOMA, R. E. (1958a). J. Amer.
Ceram. Soc. 41, 2, 63.

Barton, C. J., Grimes, W. R., Insley, H., Moore, R. E. & Thoma, R. E. (1958b). J. Phys. Chem. 62, 665. Thoma, R. E. (1958). Private communication.

ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 265.

^{*} Operated by Union Carbide Corporation for the Atomic Energy Commission.